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High pressure phase transition and mechanical properties of SmAs which crystallize in NaCl (B1) structure has been 
investigated using the three body interaction potential (TBIP) approach. These interactions arise due to the electron shell 
deformation of the overlapping ions in the crystals. The TBIP model consists of long range Coulombic, three body 
interaction and the short range overlap repulsive forces operative up to next nearest neighbor ions. During phase transition 
there is an intermediate tetragonal phase which can be viewed as distorted CsCl (B2) structure and finally it transforms to 
CsCl (B2) phase at phase transition pressure. The values of phase transition pressure, associated volume collapse, bulk 
modulus and its pressure derivative estimated by us are found to be well suited with experimental values. Thus TBPIM is in 
good agreement with their available measured data. In view of its overall success, it can be regarded as an adequate and 
appropriate model suitable for high pressure studies. 
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1.  Introduction 
 
The high pressure structural behavior of binary AB 

compounds with NaCl type structure has been a popular 
topic in condensed matter research. Among these 
compounds rare earth monopnictides show diversity in 
their electronic, magnetic and structural properties. Their 
high pressure structural behaviour has attracted a great 
attention in the research field both theoretically and 
experimentally [1-4]. Rare Earth monopnictides are 
generally semiconductors and semimetals. Despite their 
simple rock salt structure, they demonstrate various types 
of magnetic ordering generally with low transition 
temperature .Their electronic structure and magnetic 
properties are sensitive to temperature, pressure and 
impurity effects.  The rare earth 4f – 5d interactions and 
the hybridization between the rare earth and non – 4f and 
pnictogen p states are responsible for many fascinating 
phenomena that occur in rare earth monopnictides [5]. 
Most of the rare earth monopnictide compounds crystallize 
in cubic NaCl (B1) type structure at ambient pressure but 
undergo a phase transition to a CsCl (B2) structure under 
high pressure. These transitions result in the increase in 
coordination number from 6 to 8. These studies have 
correlated the unusual physical properties of these 
compounds to the f-electron hybridization with the 
conduction electrons and also due to the strong mixing of 
the f-states of the rare earth ion with the neighboring p-
orbital of the anion (p-f mixing). The B1→B2 transition is 
of considerable importance as a model for other structural 
phase transformations. It is one of the simplest first order 
transitions. 

The structural properties of CeAs, NdAs, PrAs and 
SmAs, compounds have been investigated recently [6-8] in 
great detail. The salient features of SmAs were observed 

by Shirotani et al. [1] from their high-pressure X-ray 
diffraction experiments. This compound crystallizes in B1 
structure .The high- pressure form of the SmAs is a 
tetragonal structure and can be viewed as a distorted CsCl-
type structure. They reported phase transition in SmAs at 
32.1 GPa. The aim of the present work is the investigation 
of phase transition pressure, volume collapse, second order 
elastic constants  and their combinations, elastic modulii, 
and pressure derivatives of elastic modulii  of SmAs.                 

In order to achieve this goal, we have formulated a 
three-body interaction potential (TBIP) [9,10], which 
consists of the long-range Coulomb and three-body 
interactions and Born-Mayer overlap repulsion operative 
up to next nearest neighbor ions. A brief account of the 
theoretical approach is presented in section 2. The results 
are discussed in section 3. 

 
 
2. Potential model and method of  
    computation 
 
The three body interaction arises when, during lattice 

vibrations, electron shells of neighboring ions overlap. 
This overlapping leads to the transfer of charge which 
when interacts with other charges, many body interaction 
(MBI) takes place, the dominant part of MBI is three body 
interactions. Application of pressure on crystals results in 
compression which leads to an increased charge transfer 
(or three body interaction effects ) due to the deformation 
of the overlapping electron shells of the adjacent ions (or 
non rigidity of ions) in solids .So three body interactions 
become more important when we apply pressure on our 
compound. Thus Columbic energy gets modified because 
of the presence of three body interactions (TBI) which is 
dependent on the nearest neighbor as  
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                 (1) 

 
These effects have been incorporated in the Gibbs free 
energy, given by  
 

G = U + PV – TS                         (2) 
 
            Where U is the internal energy which at 0K 
corresponds to the cohesive energy (lattice energy), S is 
the vibrational entropy at absolute T, pressure P and 
volume V. The Gibbs free energies GB1 for the NaCl (B1) 

and GB2 for the CsCl (B2) phases become equal at the 
phase transition pressure P, 

                          
 (3) 

 
          (4) 

 
 
With (=2.00 r3) and (=1.54 r'3) as the unit cell 
volumes for B1 and B2 phases respectively. The first 
terms in the energies (3) and (4) are lattice energies for B1 
and B2 structure and they are expressed as  
 

( )
1

2 2 2/ (12 ( )) /
B m mU r z e r ze f r rα α= − − +  

6 exp[( ) / ] 6 exp[(2 1.414 ) / ] 6 exp[(2 1.414 ) / ]ij i j ii i jj jb r r r b r r b r rβ ρ β ρ β ρ+ − + − + −
       

 (5)       
 

( )
2

2 2 2' ' / ' (16 ' ( ')) /
B m mU r z e r ze f r rα α= − − +  

8 ' exp[( ') / ] 3 ' exp[(2 1.154 ') / ] 3 ' exp[(2 1.154 ') / ]ij i j ii i jj jb r r r b r r b r rβ ρ β ρ β ρ+ − + − + −
    

     (6) 
                
 

Here, the first term in the above equations (5) and (6) 
is a long range Coulomb energy and the second term is 
due to three –body interactions corresponding to the 
nearest neighbor separation  are the 
Madelung constants for B1(B2) phases. The remaining 
terms correspond to the overlap repulsion represented by 
Hafemeister and Flygare (HF) type potential and extended 
up to the next nearest neighbor ion, with b and ρ being the 
hardness and range parameters,  the Pauling 

coefficient. The cation (anion) radii are given by  , 

 is the ionic charge ,   are the TBI 
parameters for B1(B2) phases . 
There are three model parameters (b, ρ, f(r)) involved in 
the present TBP, namely hardness, range and three-body 
force parameter respectively. Their values have been 
determined by solving the equilibrium conditions, 

 

 and      
    

                   (7) 

 
Here, BT is isothermal bulk modulus and =2 for B1 
phase. Accordingly, the value of hardness parameter 

increases by the ratio  for B1 phase [11] as   

 

                   (8) 

 
Here, number 8 and 6 are the coordinate number for B2 
and B1 structures respectively. 

Let us consider the conditions for the pressure 
induced transformation. This is achieved at absolute zero 
of temperature because the energy description is not 
sufficiently sophisticated to take care of the vibrational 
contribution to entropy at other temperatures. At absolute 
zero, the Gibbs free energy (G) is the enthalpy (H) itself. 
For any two structures real (B1) and hypothetical (B2) at 
phase transition pressure (P), we have  
 

                      (9) 
 

The Gibbs free energy of (B1) and (B2) phase is given 
in equations (3) and (4). The internal energy (cohesive 
energy at absolute zero) from the given phase is given by 
the equations (5) and (6). 

As an isolated phase is stable only if its free energy is 
at minimum, we have adopted the method of minimization 
of free energies for both the phases. At the phase transition 
pressure, the difference of free energies (∆G) approaches 
zero .The pressure at which ∆G→0 is called the phase 
transition pressure. The associated volume with this 
pressure shows a sudden collapse in volume showing that 
the phase transition is of first order. 

The relative volumes,    (Here, V(P) is the 

volume of the material at applied pressure P in NaCl/CsCl 
phase and V (0) is the volume at P=0 i.e. in NaCl phase) 
have been computed and plotted against the pressure in 
fig. 2 to get the phase diagrams and volume collapses,   

(Here, is the difference in volumes of 

two phases at ), associated with the phase transitions. 
To understand the elastic properties of the SmAs we 

have calculated second order elastic constants (C11, C12 
and C44) and their pressure derivatives, since these elastic 
constants are the functions of first and second order 
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derivatives of short-range potential, so their calculation 
will provide knowledge about the effect of short-range 
forces on these materials following Shanker et al. [12] and 
the expression followed by Singh et al. [13]. 

The expressions for second order elastic constants are 
as follows 
 

C11 = (e2/4a4).[-5.112Z (Z+12f(r)) +A1 + (A2+B2)/2 + 
9.3204Zaf(r)]                           (10) 

C12 = (e2/4a4).[0.226 Z (Z+12f(r)) – B1 + (A2-5B2) 
/4 +9.3204Zaf(r)]             (11) 

C44 = (e2/4a4).[2.556 Z (Z+12f(r)) - B 1+ (A2+3B2)/4]  (12) 
 

In equations (10)-(12), first term represents the long 
range coulomb interaction, second term represents the 
contribution due to TBIP and remaining contribute overlap 
repulsion expressed in terms of the short-range parameters 
(A1, B1) and (A2, B2) for the nearest neighboring (nn) and 
next nearest neighboring(nnn) ions. 

The compressibility (β), which is mainly used in earth 
science to quantify the ability of a soil or rock to reduce in 
volume with applied pressure. It can be obtained as the 
reciprocal of bulk modulus of the cubic crystal and can be 
expressed as,  

 
  β = 1/BT = 3/(C11+ 2C12).                   (13)  

 
The combination of the second order elastic constants have 
also calculated using the relations,  
 

11 12( ) / 2sC C C= −                           (14)                                     
     and 

11 12 44( 2 ) / 2LC C C C= + +                    (15) 

 
Where CS is the shear modulus of the crystal and CL is the 
Tetragonal modulus of the crystal.  

It is known that even the cubic crystal which is 
isotropic structure, also has elastic anisotropy as a result of 
a fourth rank tensor property of elasticity. The Zener 
anisotropy factor (A), Young’s Modulus (Y), often 
referred to simply as the elastic modulus, and the Poisson's 
ratio (ν), which are the most interesting elastic properties 
for applications, are also calculated in terms of the 
computed data of second order elastic constants using the 
following relations [14]. 

 
A = 2 C44/(C11-C12)             (16) 

 
Y = 9GB/(G+3B)                          (17) 

 
and    
 

ν = 1/2 [(B-2/3G)/(B+1/3G)]            (18) 
 
where G = (GV+GR)/2 is the isotropic shear modulus, GV is 
Voigt’s shear modulus corresponding to the upper bound 
of G values, and GR is Reuss’s shear modulus 
corresponding to the  lower bound of G values, and can be 
written as  
 

GV = (C11-C12+3C44)/5              (19) 
 
and    

 5/GR = 4/(C11-C12)+3/C44.             (20) 
 

The pressure derivative of elastic modulii is calculated 
using the following equations [15, 16]. 

1 2
1 1 2 2(3 ) [13.980 ( 12 ( )) 3 3 167.76448 '( ) 41.9420 ''( )]dB Z Z f r c A C A Zaf r Za f r

dP
−= − Ω + + − + − − +

       (21)                     
1 2

1 2 2 2(2 ) [23.682 ( 12 ( )) ( 6 6 ) / 4 50.0752 '( ) 13.9808 ''( )]ds Z Z f r C C A B zaf r za f r
dP

−= − Ω + + + + − − +
     

(22) 

144
1 1 2 2 2( ) [ 11.389 ( 12 ( )) 3 ( 2 10 ) / 4 44.6528 '( )dC Z Z f r A B C A B Zaf r

dP
−= − Ω − + + − + + − +

                 
(23)

 
  Where    
 

1 22.330 ( 12 ( )) 21.9612 '( )Z Z f r A A Zaf rΩ = − + + + +

 
The values of Ai, Bi have been calculated from the 

knowledge of b and ρ. 
 
 
 

3. Results and discussions 
 
The input crystal data and calculated model 

parameters   of SmAs are given in 
table 1 and 2 respectively. Using model parameters and 
minimization technique, transition pressure (Pt) has been 
predicted. We have minimized Gibb’s free energies for 
real (B1 before Pt and B2 after Pt) and hypothetical (B2 
before Pt and B1 after Pt) phases for different pressures.   
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Table 1. Input crystal data of SmAs 
 

 
Compound 

                                  Input Parameters 

   ri(A0)*                       rj(A0)*                      ro(A0)**              BT(GPa)** 

SmAs                          0.89                            1.2                           2.9605                    84.2 

 *  Ref. [17] * * Ref. [1] 
Table 2. Model parameters of SmAs 

 
   
Compound 

                                  Model parameters 

b(10-12ergs)              (10-12ergs)                 ρ(A0)                       f(r) 

SmAs                      5.5544                        7.4059                       0.348                     -0.0095 

 
Now we have evaluated the corresponding Gibb’s free 

energy difference   .We have 

plotted  against pressure (P) for SmAs in fig. 1. As the 

pressure is increased,  decreases and approaches to 
zero at the phase transition pressure. From fig. 1 it is clear 
that the phase transition pressure for SmAs is 32.6 GPa. 
The experimental value 32.1 GPa [1] is also shown in 
figure and noted that our value is in good agreement with 
experimental data and is better than the previous workers, 
G. Pagare et al. [17]. 
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Fig. 1. Variation of Gibbs free energy  difference ∆G  
(KJ/mol) with pressure for SmAs. Represented by solid  

lines. 
                             
 

 
 

The relative volumes,    (Here, V(P) is the 

volume of the material at applied pressure P in NaCl/CsCl 
phase and V (0) is the volume at P=0 i.e. in NaCl phase) 
have been computed and plotted against the pressure in 
fig. 2 to get the phase diagrams and volume collapses. The 
values of these volume collapses along with their 
experimental results are listed in table 3 for SmAs. The 
magnitude of relative volume change at the transition 
pressure for SmAs is 8.53 % which is in good agreement 
with those from experimental approach which are given in 
table 3 and fig. 2. The experimental results are shown by 
solid squares (■) in fig. 2 and they are showing the same 
trend as our values. 

0 10 20 30 40 50

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 Present
 Exp.[1]

 

 

R
el

at
iv

e 
Vo

lu
m

e 
V

/V
0

Pressure(GPa)

 
Fig. 2. Variation of volume change Vp/V0with pressure 
for SmAs. Solid line represents the present value and 
solid squares (■) represent the experimental value [1]. 
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Table 3. Calculated transition pressure and volume collapse SmAs 

 
 
Compound       Transition 

   Transition    pressure(GPa)             Volume   collapse (%) 

Present        Expt.**     Others*    Present      Expt.**    Others* 

SmAs              B1→B2                 32.6           32.1             33.3          8.53          10               11 

*  Ref. [17] * * Ref. [1] 
 

The elastic constants of solids provide a link between 
the mechanical and dynamical behavior of crystals, and 
give important information concerning the nature of the 
forces operating in solids. In particular they provide 
information on the stability and stiffness of materials.We 
have calculated second order elastic constants (SOEC)- 
C11, C12 & C44 and their combinations CL & CS. The 
quantities CS & CL are the shear and tetragonal modulii of 
a cubic crystal respectively. These are given in table 4. 
The elastic constant C11 represents elasticity in length. 
That is a longitudinal strain produces a change in C11. The 
elastic constants C12 and C44 are related to the elasticity in 
shape, which is a shear constant. A transverse strain causes 
a change in shape without a change in volume. Therefore 
C12 and C44 are less sensitive to pressure as compared to 
C11. It is necessary for lattice to satisfy Born criterion for 
mechanically stable state. For this purpose, the elastic 
energy density must be a positive definite quadratic 
function of strain. In order to fulfill the above criterion, the 
principal minor (eigen values) of the elastic constant 

matrix should all be positive. Vukcevich [18] also stated 
the high pressure stability criterion for ionic crystal, the 
stable phase of a crystal is one in which the shear elastic 
constant C44 is non-zero (for mechanical stability) and 
which has the lowest potential energy among the 
mechanically stable lattices. Thus, the stability of NaCl- 
type structure in terms of elastic constants should satisfy 
the following conditions: 

 
BT = (C11+ 2C12)/3 >0,   C44  > 0,       (24) 

 
and        CS = (C11-C12)/2 > 0  
 

From table 4 our estimated values of C44 
=1.0670×1012dyne/cm2 and CS = 0.3708×1012dyne/cm2 for 
SmAs are positive and hence the above stability criterion 
is satisfied for ionic crystal.  

 

 
Table 4. Second order elastic constants and their combinations (x1012dyne/cm2). 

 
Compound            C11                             C12                      C44                                  Cs                      CL 

SmAs                  1.3261                 0.5846                 1.0670                     0.3708                2.0224 

 
Besides this the values of Zener anisotropy factor, 

Young’s modulus, Poisson’s ratio and  compressibility are 
calculated, and also  noticed that the calculated 
compressibility is in good agreement with the 
experimental value. These are listed in the table 5. The 
pressure derivatives of second order elastic constants and 
their combinations are important for predicting the high 

pressure behavior. The pressure derivative of bulk 
modulus of SmAs is also given in table 6. It is clear from 
table 6 that our calculated value of pressure derivative of 
bulk modulus of SmAs is in good agreement with the 
experimental values.  

 

 
Table 5. Moduli of Elasticity of SmAs 

 
 
Compound 
 

 β                                          A                              Y                             ν 
              (Gpa)-1                                                       (1012dyne/cm2)       
Present          Experimental** 

SmAs               0.0120              0.0119                    2.8780              0.0609                      0.3060 

* *  Ref. [1] 
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Table 6. Pressure derivaties of elastic modulii 
 

 
Compound 

             d BT /dP       
dCs/dp        dC44/dP   

Present          Expt.**        Others* 

  SmAs                  4.243           4.5±0.3            4.7                         3.2665          -0.1584 

 
 
The fig. 3 shows the variation of Sm-As distance with 

high pressure for the SmAs compound the distance 
between Sm-As ions is 2.96 A0 at ambient pressure. At 
B1-B2 phase transition pressure of about 32.6 GPa the 
Sm-As distance suddenly increases and become 2.89 A0 in 
B2 structure. 

0 5 10 15 20 25 30 35 40

2.75

2.80

2.85

2.90

2.95

3.00

 
 

B2

B1

At
om

ic
 d

is
ta

nc
e 

(A
0 )

Pressure (GPa)

 
Fig. 3. Variation of Atomic distance with Pressure for 

SmAs at B1 and B2 phases. Represented by solid circles 
(●). 

    
    

The fig. 4 shows the transition pressure against lattice 
constant in SmAs and in some other arsenides having B1 
structure and showing B1-B2 transition under pressure. 
The present value of SmAs and the calculated value [8] of 
the NdAs have been compared with experimental values 
[1]. The transition pressure of the SmAs and NdAs 
increase with decreasing lattice constant and they have 
good agreement with experimental data. 
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Fig. 4. Variation of transition pressure against lattice 
constant. solid circles (●), solid triangles (▲) and solid 
squares (■) represents present value,calculated value [7]  
           and experimental values [1] respectively. 

 
On the basis of above work we conclude that the TBP 

Model is adequately suitable for the prediction of B1 → 
B2 phase transition pressure, associated volume collapse, 
second order elastic constants and it’s combinations, 
compressibility, anisotropy factor, Young’s modulus, 
Poisson’s ratio and pressure derivatives of bulk modulus, 
shear modulus, tetragonal modulus in SmAs. This 
approach may be applied to other lanthanide 
monopnictides for the study of phase transition 
phenomenon.  
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